Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.709
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Nat Med ; 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38704807

RESUMO

Hepatocellular carcinoma (HCC) is a malignant tumor with extremely high mortality. The tumor microenvironment is the "soil" of its occurrence and development, and the inflammatory microenvironment is an important part of the "soil". Bile acid is closely related to the occurrence of HCC. Bile acid metabolism disorder is not only directly involved in the occurrence and development of HCC but also affects the inflammatory microenvironment of HCC. Yinchenhao decoction, a traditional Chinese medicine formula, can regulate bile acid metabolism and may affect the inflammatory microenvironment of HCC. To determine the effect of Yinchenhao decoction on bile acid metabolism in mice with HCC and to explore the possible mechanism by which Yinchenhao decoction improves the inflammatory microenvironment of HCC by regulating bile acid metabolism, we established mice model of orthotopic transplantation of hepatocellular carcinoma. These mice were treated with three doses of Yinchenhao decoction, then liver samples were collected and tested. Yinchenhao decoction can regulate the disorder of bile acid metabolism in liver cancer mice. Besides, it can improve inflammatory reactions, reduce hepatocyte degeneration and necrosis, and even reduce liver weight and the liver index. Taurochenodeoxycholic acid, hyodeoxycholic acid, and taurohyodeoxycholic acid are important molecules in the regulation of the liver inflammatory microenvironment, laying a foundation for the regulation of the liver tumor inflammatory microenvironment based on bile acids. Yinchenhao decoction may improve the inflammatory microenvironment of mice with HCC by ameliorating hepatic bile acid metabolism.

2.
World J Gastrointest Surg ; 16(4): 1087-1096, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38690037

RESUMO

BACKGROUND: Acute liver failure (ALF) is a common cause of postoperative death in patients with hepatocellular carcinoma (HCC) and is a serious threat to patient safety. The neutrophil-to-lymphocyte ratio (NLR) is a common inflammatory indicator that is associated with the prognosis of various diseases, and the albumin-bilirubin score (ALBI) is used to evaluate liver function in liver cancer patients. Therefore, this study aimed to construct a predictive model for postoperative ALF in HCC tumor integrity resection (R0) based on the NLR and ALBI, providing a basis for clinicians to choose appropriate treatment plans. AIM: To construct an ALF prediction model after R0 surgery for HCC based on NLR and ALBI. METHODS: In total, 194 patients with HCC who visited The First People's Hospital of Lianyungang to receive R0 between May 2018 and May 2023 were enrolled and divided into the ALF and non-ALF groups. We compared differences in the NLR and ALBI between the two groups. The risk factors of ALF after R0 surgery for HCC were screened in the univariate analysis. Independent risk factors were analyzed by multifactorial logistic regression. We then constructed a prediction model of ALF after R0 surgery for HCC. A receiver operating characteristic curve, calibration curve, and decision curve analysis (DCA) were used to evaluate the value of the prediction model. RESULTS: Among 194 patients with HCC who met the standard inclusion criteria, 46 cases of ALF occurred after R0 (23.71%). There were significant differences in the NLR and ALBI between the two groups (P < 0.05). The univariate analysis showed that alpha-fetoprotein (AFP) and blood loss volume (BLV) were significantly higher in the ALF group compared with the non-ALF group (P < 0.05). The multifactorial analysis showed that NLR, ALBI, AFP, and BLV were independent risk factors for ALF after R0 surgery in HCC. The predictive efficacy of NLR, ALBI, AFP, and BLV in predicting the occurrence of ALT after R0 surgery for HCC was average [area under the curve (AUC)NLR = 0.767, AUCALBI = 0.755, AUCAFP = 0.599, AUCBLV = 0.718]. The prediction model for ALF after R0 surgery for HCC based on NLR and ALBI had a better predictive efficacy (AUC = 0.916). The calibration curve and actual curve were in good agreement. DCA showed a high net gain and that the model was safer compared to the curve in the extreme case over a wide range of thresholds. CONCLUSION: The prediction model based on NLR and ALBI can effectively predict the risk of developing ALF after HCC R0 surgery, providing a basis for clinical prevention of developing ALF after HCC R0 surgery.

3.
Anal Chem ; 96(19): 7738-7746, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38690966

RESUMO

Telomerase is an important biomarker for early diagnosis of cancers, but current telomerase assays usually rely on measuring the extension products of telomerase substrates, which increases the assay complexity. More evidence indicates that human telomerase RNA (hTR), as a core component of telomerase, is positively correlated with the telomerase activity. Herein, we demonstrate the development of a duplex-specific nuclease (DSN)-propelled 3D quantum dot (QD) nanoassembly with two-step Föster resonance energy transfer (FRET) for the one-step sensing of hTR in breast cancer cells and tissues. This assay involves only one hairpin probe modified with a Cy5 at the sixth base from the 5'-biotin end and a BHQ2 at the 3'-terminus, which integrates three functions of target recognition, target recycling amplification, and signal readout. The anchoring of the hairpin probe on the 605QD surface results in the formation of a 3D 605QD-Cy5-probe-BHQ2 nanoassembly in which two-step FRET occurs among the 605QD, Cy5, and BHQ2 quencher. Notably, the formation of 605QD-Cy5-probe-BHQ2 nanoassembly facilitates the reduction of background signal and the increase of signal-to-background ratio due to its dense, highly oriented nucleic acid shell-induced steric hindrance effect. This assay can achieve one-step and rapid detection of hTR with a detection limit of 2.10 fM, which is the simplest and most rapid hTR assay reported so far. Moreover, this assay can efficiently distinguish single-base mismatched sequences, and it can discriminate the hTR level between breast cancer patients and healthy donors with a high accuracy of 100%, with great prospects for early diagnosis of cancers.


Assuntos
Neoplasias da Mama , Transferência Ressonante de Energia de Fluorescência , Pontos Quânticos , RNA , Telomerase , Humanos , Telomerase/metabolismo , Telomerase/análise , Pontos Quânticos/química , RNA/metabolismo , RNA/análise , Feminino , Carbocianinas/química , Técnicas Biossensoriais/métodos
4.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(2): 161-168, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38686711

RESUMO

Objective To analyze the clinical efficacy of microwave ablation in the colorectal cancer with simultaneously multiple liver metastases that was initially evaluated as potentially resectable. Methods The patients with potentially resectable colorectal cancer with simultaneous multiple liver metastases treated in the Department of General Surgery of the First Affiliated Hospital of Hebei North University,the Center of Minimally Invasive Therapy in Oncology of Traditional Chinese and Western Medicine in Dongzhimen Hospital of Beijing University of Chinese Medicine,and the Second Department of General Surgery in the Fourth Hospital of Hebei Medical University from October 1,2018 to October 1,2020 were selected in this study.The general data,pathological features,treatment methods,and clinical efficacy of the patients were collected.According to the treatment methods,the patients were assigned into a surgical resection group(conversion therapy+laparoscopic primary resection+hepatectomy)and a microwave ablation group(conversion therapy+laparoscopic primary resection+microwave ablation).The surgical indicators(operation duration,time to first postoperative anal exhaust,hospital stay,etc.)and postoperative complications(anastomotic stenosis,anastomotic hemorrhage,incision infection,etc.)were compared between the two groups.The survival period was followed up,including the overall survival period and disease-free survival period,and the survival curves were drawn to analyze the clinical efficacy of the two treatment regimens. Results A total of 198 patients with potentially resectable colorectal cancer with simultaneous multiple liver metastases were included in this study.Sixty-six patients were cured by neoadjuvant chemotherapy(FOLFOX or FOLFIRI),including 30 patients in the surgical resection group and 36 patients in the microwave ablation group(with 57 tumors ablated).After the first ablation,54(94.74%)tumors achieved complete ablation,and all of them reached no evidence of disease status after re-ablation.The microwave ablation group had shorter operation duration,less intraoperative blood loss,shorter time to first postoperative anal exhaust,shorter time of taking a liquid diet,shorter hospital stay,and lower hospitalization cost than the surgical resection group(all P<0.001).In addition,the microwave ablation group had lower visual analogue scale score(P<0.001)than the surgical resection group.The incidences of complications such as incision infection(P=0.740),anastomotic fistula(P=1.000),and anastomotic stenosis(P=1.000),the overall survival period(P=0.191),and the disease-free survival period(P=0.934)showed no significant differences between the two groups. Conclusions For patients with colorectal cancer with simultaneous multiple liver metastases initially assessed as potentially resectable,laparoscopic primary resection+surgical resection/microwave ablation after conversion therapy was safe,effective,and had similar survival outcomes.Microwave ablation outperformed surgical resection in postoperative recovery,economy,and tolerability,being worthy of clinical promotion.


Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Micro-Ondas , Humanos , Neoplasias Colorretais/patologia , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/cirurgia , Micro-Ondas/uso terapêutico , Laparoscopia/métodos , Masculino , Feminino , Resultado do Tratamento , Fluoruracila/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Pessoa de Meia-Idade , Taxa de Sobrevida
5.
Medicine (Baltimore) ; 103(15): e37768, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38608080

RESUMO

BACKGROUND: Using meta-analysis to evaluate the diagnostic value of contrast-enhanced ultrasound (CEUS) in the diagnosis of papillary thyroid microcarcinoma (PTMC). METHODS: For this systematic review and meta-analysis, we searched PubMed, Cochrane Library, Web of Science, WanFang Data, VPCS Data, and China National Knowledge Infrastructure electronic databases for diagnostic studies on PTMC by CEUS from January 2013 to November 2022. Data were not available or incomplete such as case reports, nonhuman studies, etc, were excluded. Random-effects meta-analyses were used to evaluate the diagnostic accuracy of CEUS in diagnosing PTMC. The quality of the evidence was assessed with the QUADAS-2 scale. This study is registered on PROSPERO, number CRD42023409417. RESULTS: Of 1064 records identified, 33 were eligible. The results showed that the pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio of CEUS in diagnosing PTMC were 0.84 (95% confidence interval [CI] = 0.83-0.86), 0.82 (95% CI = 0.80-0.83), 3.90 (95% CI = 3.23-4.72), 0.21 (95% CI = 0.18-0.25), and 20.01 (95% CI = 14.97-26.74), respectively, and the area under the summary receiver operating characteristic curve was 0.8930 (the Q index was 0.8239). The Deek funnel plot indicated publication bias (P ˂.01). CONCLUSION: This meta-analysis provides an overview of diagnostic accuracy of CEUS in diagnosing PTMC which indicates CEUS has a good diagnostic value for PTMC. The limitations of this study are publication bias and strong geographical bias.


Assuntos
Carcinoma Papilar , Neoplasias da Glândula Tireoide , Humanos , Ultrassonografia , Carcinoma Papilar/diagnóstico por imagem , China , Bases de Dados Factuais
6.
Artigo em Inglês | MEDLINE | ID: mdl-38669306

RESUMO

Background: Pancreaticoduodenectomy serves as the standard surgical treatment for periampullary tumors. Previous studies have suggested that high body mass index (BMI) is associated with an unfavorable prognosis following laparoscopic pancreaticoduodenectomy (LPD). However, the relationship between low BMI and postoperative complications remains unclear. Materials and Methods: A retrospective analysis of clinical data from 1130 patients who underwent LPD between April 2014 and December 2022 was conducted. Multivariate regression and restricted cubic spline analyses were utilized to explore the correlations between BMI and short-term outcomes, with adjustments for potential confounders. Results: Multivariable logistic regression revealed that overweight, obese, or severely underweight patients had an elevated risk of postoperative pancreatic fistula (POPF) compared to those with a normal BMI. Moreover, obesity was significantly correlated with a higher proportion of "failure to rescue." BMI exhibited a J-shaped relationship with respiratory complications and in-hospital mortality, a W-shaped relationship with multiple complications and anastomotic leakage (pancreatic fistula), and a U-shaped association with "failure to rescue" rates. The lowest risk was observed at BMI levels of 20 and 25 kg/m2 for multiple complications and pancreatic fistula, respectively. Conclusion: Both high and low BMI are identified as risk factors for the occurrence of postoperative POPF and in-hospital mortality following LPD. Notably, patients with higher BMI and severe underweight conditions are associated with an increased likelihood of "failure to rescue."

7.
BMC Ophthalmol ; 24(1): 157, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594720

RESUMO

BACKGROUND: Aniridia is a rare eye disorder with a high incidence of glaucoma, and surgical intervention is often needed to control the intraocular pressure (IOP). Here, we reported a case of illuminated microcatheter-assisted circumferential trabeculotomy (MAT) performed on an aniridic glaucoma patient following a previous failed angle surgery. The surgical procedures for aniridic glaucoma were also reviewed. CASE PRESENTATION: A 21-year-old man, diagnosed with aniridic glaucoma, came to our hospital consulting for the poor control of left eye's IOP despite receiving goniotomy surgery 3 years ago. The IOP was 26 mmHg with maximum topical antiglaucoma eyedrops. The central cornea was opaque and the majority of iris was absent. The gonioscopy and ultrasound biomicroscopy (UBM) demonstrated that 360° anterior chamber angle was closed. The whole exome sequencing of peripheral blood confirmed a 13.39 Mb copy number loss at chromosome 11p15.1p13, containing PAX6 and WT1 gene. The 360° MAT surgery was performed on his left eye. At 1-year follow-up, the IOP was 19mmHg with 2 kinds of topical antiglaucoma medications, and the postoperative UBM demonstrated the successful incision of the anterior chamber angle. CONCLUSIONS: The case presented here exhibited a case of aniridic glaucoma treated by MAT surgery. The MAT surgery may be an effective option for IOP control in aniridic glaucoma patients following a previous failed angle surgery.


Assuntos
Aniridia , Glaucoma , Trabeculectomia , Humanos , Masculino , Adulto Jovem , Seguimentos , Glaucoma/diagnóstico , Glaucoma/cirurgia , Gonioscopia , Pressão Intraocular , Fator de Transcrição PAX6 , Estudos Retrospectivos , Trabeculectomia/métodos , Resultado do Tratamento
8.
Artigo em Inglês | MEDLINE | ID: mdl-38561604

RESUMO

BACKGROUND: Cancer stem cells (CSC) play an important role in the development of Liver Hepatocellular Carcinoma (LIHC). However, the regulatory mechanisms between acetylation- associated genes (HAGs) and liver cancer stem cells remain unclear. OBJECTIVE: To identify a set of histone acetylation genes (HAGs) with close associations to liver cancer stem cells (LCSCs), and to construct a prognostic model that facilitates more accurate prognosis assessments for LIHC patients. METHODS: LIHC expression data were downloaded from the public databases. Using mRNA expression- based stemness indices (mRNAsi) inferred by One-Class Logistic Regression (OCLR), Differentially Expressed Genes (DEGs) (mRNAsi-High VS. mRNAsi-Low groups) were intersected with DEGs (LIHC VS. normal samples), as well as histone acetylation-associated genes (HAGs), to obtain mRNAsi-HAGs. A risk model was constructed employing the prognostic genes, which were acquired through univariate Cox and Least Shrinkage and Selection Operator (LASSO) regression analyses. Subsequently, independent prognostic factors were identified via univariate and multivariate Cox regression analyses and then a nomogram for prediction of LIHC survival was developed. Additionally, immune infiltration and drug sensitivity analysis were performed to explore the relationships between prognostic genes and immune cells. Finally, the expressions of selected mRNAsi-HAGs were validated in the LIHC tumor sphere by quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR) assay and western blot analysis. RESULTS: Among 13 identified mRNAsi-HAGs, 3 prognostic genes (HDAC1, HDAC11, and HAT1) were selected to construct a risk model (mRNAsi-HAGs risk score = 0.02 * HDAC1 + 0.09 * HAT1 + 0.05 * HDAC11). T-stage, mRNAsi, and mRNAsi-HAGs risk scores were identified as independent prognostic factors to construct the nomogram, which was proved to predict the survival probability of LIHC patients effectively. We subsequently observed strongly positive correlations between mRNAsi-HAGs risk score and tumor-infiltrating T cells, B cells and macrophages/monocytes. Moreover, we found 8 drugs (Mitomycin C, IPA 3, FTI 277, Bleomycin, Tipifarnib, GSK 650394, AICAR and EHT 1864) had significant correlations with mRNAsi-HAGs risk scores. The expression of HDAC1 and HDAC11 was higher in CSC-like cells in the tumor sphere. CONCLUSION: This study constructed a mRNAsi and HAGs-related prognostic model, which has implications for potential immunotherapy and drug treatment of LIHC.

9.
Surg Laparosc Endosc Percutan Tech ; 34(2): 201-205, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38571322

RESUMO

BACKGROUND: With the aging of the global population, the incidence rate of acute cholecystitis is increasing. Laparoscopic cholecystectomy is considered as the first choice to treat acute cholecystitis. How to effectively avoid serious intraoperative complications such as bile duct and blood vessel injury is still a difficult problem that puzzles surgeons. This paper introduces the application of laparoscopic cholecystectomy, a new surgical concept, in acute difficult cholecystitis. METHODS: This retrospective analysis was carried out from January 2019 to January 2021. A total of 36 patients with acute difficult cholecystitis underwent 3-step laparoscopic cholecystectomy. The general information, clinical features, surgical methods, surgical results, and postoperative complications of the patients were analyzed. RESULTS: All patients successfully completed the surgery, one of them was converted to laparotomy, and the other 35 cases were treated with 3-step laparoscopic cholecystectomy. Postoperative bile leakage occurred in 2 cases (5.56%), secondary choledocholithiasis in 1 case (2.78%), and hepatic effusion in 1 case (2.78%). No postoperative bleeding, septal infection, and other complications occurred, and no postoperative colon injury, gastroduodenal injury, liver injury, bile duct injury, vascular injury, and other surgery-related complications occurred. All 36 patients were discharged from hospital after successful recovery. No one died 30 days after surgery, and there was no abnormality in outpatient follow-up for 3 months after surgery. CONCLUSIONS: Three-step laparoscopic cholecystectomy seems to be safer and more feasible for acute difficult cholecystitis patients. Compared with traditional laparoscopic cholecystectomy or partial cholecystectomy, 3-step laparoscopic cholecystectomy has the advantages of safe surgery and less complications, which is worth trying by clinicians.


Assuntos
Colecistectomia Laparoscópica , Colecistite Aguda , Humanos , Colecistectomia Laparoscópica/métodos , Estudos Retrospectivos , Colecistectomia/métodos , Colecistite Aguda/cirurgia , Colecistite Aguda/etiologia , Ductos Biliares/lesões
10.
Antioxidants (Basel) ; 13(4)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38671903

RESUMO

Diabetic kidney disease (DKD) is the principal culprit behind chronic kidney disease (CKD), ultimately developing end-stage renal disease (ESRD) and necessitating costly dialysis or kidney transplantation. The limited therapeutic efficiency among individuals with DKD is a result of our finite understanding of its pathogenesis. DKD is the result of complex interactions between various factors. Oxidative stress is a fundamental factor that can establish a link between hyperglycemia and the vascular complications frequently encountered in diabetes, particularly DKD. It is crucial to recognize the essential and integral role of oxidative stress in the development of diabetic vascular complications, particularly DKD. Hyperglycemia is the primary culprit that can trigger an upsurge in the production of reactive oxygen species (ROS), ultimately sparking oxidative stress. The main endogenous sources of ROS include mitochondrial ROS production, NADPH oxidases (Nox), uncoupled endothelial nitric oxide synthase (eNOS), xanthine oxidase (XO), cytochrome P450 (CYP450), and lipoxygenase. Under persistent high glucose levels, immune cells, the complement system, advanced glycation end products (AGEs), protein kinase C (PKC), polyol pathway, and the hexosamine pathway are activated. Consequently, the oxidant-antioxidant balance within the body is disrupted, which triggers a series of reactions in various downstream pathways, including phosphoinositide 3-kinase/protein kinase B (PI3K/Akt), transforming growth factor beta/p38-mitogen-activated protein kinase (TGF-ß/p38-MAPK), nuclear factor kappa B (NF-κB), adenosine monophosphate-activated protein kinase (AMPK), and the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling. The disease might persist even if strict glucose control is achieved, which can be attributed to epigenetic modifications. The treatment of DKD remains an unresolved issue. Therefore, reducing ROS is an intriguing therapeutic target. The clinical trials have shown that bardoxolone methyl, a nuclear factor erythroid 2-related factor 2 (Nrf2) activator, blood glucose-lowering drugs, such as sodium-glucose cotransporter 2 inhibitors, and glucagon-like peptide-1 receptor agonists can effectively slow down the progression of DKD by reducing oxidative stress. Other antioxidants, including vitamins, lipoic acid, Nox inhibitors, epigenetic regulators, and complement inhibitors, present a promising therapeutic option for the treatment of DKD. In this review, we conduct a thorough assessment of both preclinical studies and current findings from clinical studies that focus on targeted interventions aimed at manipulating these pathways. We aim to provide a comprehensive overview of the current state of research in this area and identify key areas for future exploration.

11.
World J Diabetes ; 15(3): 392-402, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38591079

RESUMO

Diabetes affects about 422 million people worldwide, causing 1.5 million deaths each year. However, the incidence of diabetes is increasing, including several types of diabetes. Type 1 diabetes (5%-10% of diabetic cases) and type 2 diabetes (90%-95% of diabetic cases) are the main types of diabetes in the clinic. Accumulating evidence shows that the fibroblast growth factor (FGF) family plays important roles in many metabolic disorders, including type 1 and type 2 diabetes. FGF consists of 23 family members (FGF-1-23) in humans. Here, we review current findings of FGFs in the treatment of diabetes and management of diabetic complications. Some FGFs (e.g., FGF-15, FGF-19, and FGF-21) have been broadly investigated in preclinical studies for the diagnosis and treatment of diabetes, and their therapeutic roles in diabetes are currently under investigation in clinical trials. Overall, the roles of FGFs in diabetes and diabetic complications are involved in numerous processes. First, FGF intervention can prevent high-fat diet-induced obesity and insulin resistance and reduce the levels of fasting blood glucose and triglycerides by regulating lipolysis in adipose tissues and hepatic glucose production. Second, modulation of FGF expression can inhibit renal and cardiac fibrosis by regulating the expression of extracellular matrix components, promote diabetic wound healing process and bone repair, and inhibit cancer cell proliferation and migration. Finally, FGFs can regulate the activation of glucose-excited neurons and the expression of thermogenic genes.

12.
Talanta ; 274: 126030, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38574540

RESUMO

Aberrant long noncoding RNA (lncRNA) expression is linked to varied pathological processes and malignant tumors, and lncRNA can serve as potential disease biomarkers. Herein, we demonstrate the autonomous enzymatic synthesis of functional nucleic acids for sensitive measurement of lncRNA in human lung tissues on the basis of multiple primer generation-mediated rolling circle amplification (mPG-RCA). This assay involves two padlock probes that act as both a detection probe for recognizing target lncRNA and a domain for producing complementary DNAzyme. Two padlock probes can hybridize with target lncRNA at different sites, followed by ligation to form a circular template with the aid of RNA ligase. The circular template can initiate mPG-RCA to generate abundant Mg2+-dependent DNAzymes that can specifically cleave signal probes to induce the recovery of Cy3 fluorescence. The inherent characteristics of ligase-based ligation reaction and DNAzymes endow this assay with excellent specificity, and the introduction of multiple padlock probes endows this assay with high sensitivity. This strategy can rapidly and sensitively measure lncRNA with a wide linear range of 1 fM - 1 nM and a detection limit of 678 aM within 1.5 h, and it shows distinct advantages of simplicity and immobilization-free without the need of precise temperature control and tedious procedures of nanomaterial preparation. Moreover, it enables accurate measurement of lncRNA level in normal cells and malignant tumor cells as well as differentiation of lncRNA expressions in tissues of non-small cell lung cancer (NSCLC) patients and normal individuals, with promising applications in biomedical studies and disease diagnosis.


Assuntos
DNA Catalítico , Pulmão , Técnicas de Amplificação de Ácido Nucleico , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , DNA Catalítico/química , DNA Catalítico/metabolismo , Pulmão/metabolismo , Técnicas de Amplificação de Ácido Nucleico/métodos , Limite de Detecção
13.
Heliyon ; 10(6): e27804, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38510037

RESUMO

Background: Polyphyllin, a natural compound derived primarily from the Paris genus, manifests its anticancer properties. Extensive research on its therapeutic potential in cancers has been reported. However, there is no systematical analysis of the general aspects of research on polyphyllin by bibliometric analysis. The aim of this study is to visualize emerging trends and hotspots and predict potential research directions in this field. Methods: In this study, we collected relevant research articles from the Web of Science Core Collection Bibliometrics. Using R-bibliometrix, we analyzed the research status, hotspots, frontiers, and development trends of polyphyllin in high-incidence cancers. To conduct a comprehensive visual analysis, CiteSpace and VOSviewer were used for visual analysis of authors, countries, institutions, keywords, and co-cited references within the published articles. Results: A total of 257 articles focusing on the research of polyphyllin in high-incidence cancers were retrieved from the WOSCC database, covering the period from 2005 to 2023. The analysis revealed a consistent increasing trend in annual publications during this timeframe. Notably, China emerged as the most productive country, with Tianjin University leading the institutions. The Journal of Ethnopharmacology stood out as the most prominent journal in this field, while Gao WY emerged as the most prolific author. Polyphyllin VI, polyphyllin II, and polyphyllin VII have emerged as the latest research hotspots. Additionally, the investigation of autophagy and its associated mechanisms has gained significant attention as a novel research direction. Conclusion: This study presents a novel visualization of the research on polyphyllin saponins in the field of highly prevalent cancers using bibliometric analysis. The investigation of polyphyllin D has emerged as a primary focus in this field, with lung cancer, breast cancer, and liver cancer being the key areas of current research. Lastly, polyphyllin saponins show potential application in the field of cancer.

14.
Front Endocrinol (Lausanne) ; 15: 1372553, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38501105

RESUMO

Driven by the intricacy of the illness and the need for individualized treatments, targeted therapy and biomarker research in thyroid cancer represent an important frontier in oncology. The variety of genetic changes associated with thyroid cancer demand more investigation to elucidate molecular details. This research is clinically significant since it can be used to develop customized treatment plans. A more focused approach is provided by targeted therapies, which target certain molecular targets such as mutant BRAF or RET proteins. This strategy minimizes collateral harm to healthy tissues and may also reduce adverse effects. Simultaneously, patient categorization based on molecular profiles is made possible by biomarker exploration, which allows for customized therapy regimens and maximizes therapeutic results. The benefits of targeted therapy and biomarker research go beyond their immediate clinical impact to encompass the whole cancer landscape. Comprehending the genetic underpinnings of thyroid cancer facilitates the creation of novel treatments that specifically target aberrant molecules. This advances the treatment of thyroid cancer and advances precision medicine, paving the way for the treatment of other cancers. Taken simply, more study on thyroid cancer is promising for better patient care. The concepts discovered during this investigation have the potential to completely transform the way that care is provided, bringing in a new era of personalized, precision medicine. This paradigm shift could improve the prognosis and quality of life for individuals with thyroid cancer and act as an inspiration for advances in other cancer types.


Assuntos
Qualidade de Vida , Neoplasias da Glândula Tireoide , Humanos , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/genética , Prognóstico , Medicina de Precisão , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo
15.
World J Hepatol ; 16(2): 140-145, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38495285

RESUMO

Cytokines play pleiotropic roles in human health and disease by regulating both innate and adaptive immune responses. Interleukins (ILs), a large group of cytokines, can be divided into seven families, including IL-1, IL-2, IL-6, IL-8, IL-10, IL-12, and IL-17 families. Here, we review the functions of ILs in the pathogenesis and resolution of liver diseases, such as liver inflammation (e.g., IL-35), alcohol-related liver disease (e.g., IL-11), non-alcoholic steatohepatitis (e.g., IL-22), liver fibrosis (e.g., Il-17a), and liver cancer (e.g., IL-8). Overall, IL-1 family members are implicated in liver inflammation induced by different etiologies, such as alcohol consumption, high-fat diet, and hepatitis viruses. IL-2 family members mainly regulate T lymphocyte and NK cell proliferation and activation, and the differentiation of T cells. IL-6 family cytokines play important roles in acute phase response in liver infection, liver regeneration, and metabolic regulation, as well as lymphocyte activation. IL-8, also known as CXCL8, is activated in chronic liver diseases, which is associated with the accumulation of neutrophils and macrophages. IL-10 family members contribute key roles to liver immune tolerance and immunosuppression in liver disease. IL-12 family cytokines influence T-cell differentiation and play an essential role in autoimmune liver disease. IL-17 subfamilies contribute to infection defense, liver inflammation, and Th17 cell differentiation. ILs interact with different type I and type II cytokine receptors to regulate intracellular signaling pathways that mediate their functions. However, most clinical studies are only performed to evaluate IL-mediated therapies on alcohol and hepatitis virus infection-induced hepatitis. More pre-clinical and clinical studies are required to evaluate IL-mediated monotherapy and synergistic therapies.

16.
Anal Chem ; 96(11): 4647-4656, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38441540

RESUMO

Telomerase is a basic reverse transcriptase that maintains the telomere length in cells, and accurate and specific sensing of telomerase in living cells is critical for medical diagnostics and disease therapeutics. Herein, we demonstrate for the first time the construction of an enzymatically controlled DNA nanomachine with endogenous apurinic/apyrimidinic endonuclease 1 (APE1) as a driving force for one-step imaging of telomerase in living cells. The DNA nanomachine is designed by rational engineering of substrate probes and reporter probes embedded with an enzyme-activatable site (i.e., AP site) and their subsequent assembly on a gold nanoparticle (AuNP). Upon recognition and cleavage of the AP site in the substrate probe by APE1, the loop of the substrate probe unfolds, exposing telomeric primer (TP) with the 3'-OH end. Subsequently, the TP is elongated by telomerase at the 3'-OH end to generate a long telomeric product. The resultant telomeric product acts as a swing arm that can hybridize with a reporter probe to initiate the APE1-powered walking reaction, ultimately generating a significantly enhanced fluorescence signal. Notably, endogenous APE1 is used as the driving force of the DNA nanomachine, avoiding the introduction of exogenous auxiliary cofactors into the cellular microenvironment. Owing to the high kinetics and high amplification efficiency of the APE1-powered DNA nanomachine, this strategy enables one-step sensitive sensing of telomerase in vitro and in vivo. It can successfully discriminate telomerase activity between cancer cells and normal cells, screen telomerase inhibitors, and monitor the variations of telomerase activity in living cells, offering a prospective platform for molecular diagnostics and drug discovery.


Assuntos
Nanopartículas Metálicas , Telomerase , Humanos , Telomerase/metabolismo , Ouro/química , Nanopartículas Metálicas/química , DNA/química , Células HeLa , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo
17.
Anal Chem ; 96(11): 4487-4494, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38451469

RESUMO

O6-Methylguanine-DNA-methyltransferase (MGMT) is a demethylation protein that dynamically regulates the O6-methylguanine modification (O6 MeG), and dysregulated MGMT is implicated in various malignant tumors. Herein, we integrate demethylation-activated DNAzyme with a single quantum dot nanosensor to sensitively detect MGMT in breast tissues. The presence of MGMT induces the demethylation of the O6 MeG-caged DNAzyme and the restoration of catalytic activity. The activated DNAzyme then specifically cleaves the ribonucleic acid site of hairpin DNA to expose toehold sequences. The liberated toehold sequence may act as a primer to trigger a cyclic exponential amplification reaction for the generation of enormous signal strands that bind with the Cy5/biotin-labeled probes to form sandwich hybrids. The assembly of sandwich hybrids onto 605QD obtains 605QD-dsDNA-Cy5 nanostructures, inducing efficient FRET between the 605QD donor and Cy5 acceptor. Notably, the introduction of a mismatched base in hairpin DNA can greatly minimize the background and improve the signal-to-noise ratio. This nanosensor achieves a dynamic range of 1.0 × 10-8 to 0.1 ng/µL and a detection limit of 155.78 aM, and it can screen MGMT inhibitors and monitor cellular MGMT activity with single-cell sensitivity. Moreover, it can distinguish the MGMT level in tissues of breast cancer patients and healthy persons, holding great potential in clinical diagnostics and epigenetic research studies.


Assuntos
Carbocianinas , DNA Catalítico , Guanina/análogos & derivados , Pontos Quânticos , Humanos , DNA Catalítico/metabolismo , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , DNA/química , Desmetilação
18.
Front Immunol ; 15: 1368203, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38545108

RESUMO

Spinal cord injury (SCI) results in a large amount of tissue cell debris in the lesion site, which interacts with various cytokines, including inflammatory factors, and the intrinsic glial environment of the central nervous system (CNS) to form an inhibitory microenvironment that impedes nerve regeneration. The efficient clearance of tissue debris is crucial for the resolution of the inhibitory microenvironment after SCI. Macrophages are the main cells responsible for tissue debris removal after SCI. However, the high lipid content in tissue debris and the dysregulation of lipid metabolism within macrophages lead to their transformation into foamy macrophages during the phagocytic process. This phenotypic shift is associated with a further pro-inflammatory polarization that may aggravate neurological deterioration and hamper nerve repair. In this review, we summarize the phenotype and metabolism of macrophages under inflammatory conditions, as well as the mechanisms and consequences of foam cell formation after SCI. Moreover, we discuss two strategies for foam cell modulation and several potential therapeutic targets that may enhance the treatment of SCI.


Assuntos
Células Espumosas , Traumatismos da Medula Espinal , Humanos , Células Espumosas/patologia , Traumatismos da Medula Espinal/metabolismo , Macrófagos/metabolismo , Sistema Nervoso Central/metabolismo
19.
J Transl Med ; 22(1): 220, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429732

RESUMO

BACKGROUND: Targeting CD47/SIRPα axis has emerged as a promising strategy in cancer immunotherapy. Despite the encouraging clinical efficacy observed in hematologic malignancies through CD47-SIRPα blockade, there are safety concerns related to the binding of anti-CD47 antibodies to CD47 on the membrane of peripheral blood cells. METHODS: In order to enhance the selectivity and therapeutic efficacy of the antibody, we developed a humanized anti-CD47 monoclonal antibody called Gentulizumab (GenSci059). The binding capacity of GenSci059 to CD47 was evaluated using flow cytometry and surface plasmon resonance (SPR) methods, the inhibitory effect of GenSci059 on the CD47-SIRPα interaction was evaluated through competitive ELISA assays. The anti-tumor activity of GenSci059 was assessed using in vitro macrophage models and in vivo patient-derived xenograft (PDX) models. To evaluate the safety profile of GenSci059, binding assays were conducted using blood cells. Additionally, we investigated the underlying mechanisms contributing to the weaker binding of GenSci059 to erythrocytes. Finally, toxicity studies were performed in non-human primates to assess the potential risks associated with GenSci059. RESULTS: GenSci059 displayed strong binding to CD47 in both human and monkey, and effectively inhibited the CD47-SIRPα interaction. With doses ranging from 5 to 20 mg/kg, GenSci059 demonstrated potent inhibition of the growth of subcutaneous tumor with the inhibition rates ranged from 30.3% to complete regression. Combination of GenSci059 with 2.5 mg/kg Rituximab at a dose of 2.5 mg/kg showed enhanced tumor inhibition compared to monotherapy, exhibiting synergistic effects. GenSci059 exhibited minimal binding to hRBCs compared to Hu5F9-G4. The binding of GenSci059 to CD47 depended on the cyclization of N-terminal pyroglutamic acid and the spatial conformation of CD47, but was not affected by its glycosylation modifications. A maximum tolerated dose (MTD) of 450 mg/kg was observed for GenSci059, and no significant adverse effects were observed in repeated dosages up to 10 + 300 mg/kg, indicating a favorable safety profile. CONCLUSION: GenSci059 selectively binds to CD47, effectively blocks the CD47/SIRPα axis signaling pathway and enhances the phagocytosis effects of macrophages toward tumor cells. This monoclonal antibody demonstrates potent antitumor activity and exhibits a favorable safety profile, positioning it as a promising and effective therapeutic option for cancer.


Assuntos
Antígeno CD47 , Neoplasias , Animais , Humanos , Neoplasias/patologia , Fagocitose , Macrófagos/metabolismo , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Imunoterapia/métodos , Modelos Animais de Doenças , Antígenos de Diferenciação/metabolismo , Antígenos de Diferenciação/farmacologia , Antígenos de Diferenciação/uso terapêutico
20.
Anal Chem ; 96(13): 5323-5330, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38501982

RESUMO

Oxidative DNA damage is closely associated with the occurrence of numerous human diseases and cancers. 8-Oxo-7,8-dihydroguanine (8-oxoG) is the most prevalent form of DNA damage, and it has become not only an oxidative stress biomarker but also a new epigenetic-like biomarker. However, few approaches are available for the locus-specific detection of 8-oxoG because of the low abundance of 8-oxoG damage in DNA and the limited sensitivity of existing assays. Herein, we demonstrate the elongation and ligation-mediated differential coding for label-free and locus-specific analysis of 8-oxoG in DNA. This assay is very simple without the involvement of any specific labeled probes, complicated steps, and large sample consumption. The utilization of Bsu DNA polymerase can specifically initiate a single-base extension reaction to incorporate dATP into the opposite position of 8-oxoG, endowing this assay with excellent selectivity. The introduction of cascade amplification reaction significantly enhances the sensitivity. The proposed method can monitor 8-oxoG with a limit of detection of 8.21 × 10-19 M (0.82 aM), and it can identify as low as 0.001% 8-oxoG damage from a complex mixture with excessive undamaged DNAs. This method can be further applied to measure 8-oxoG levels in the genomic DNA of human cells under diverse oxidative stress, holding prospect potential in the dynamic monitoring of critical 8-oxoG sites, early clinical diagnosis, and gene damage-related biomedical research.


Assuntos
DNA Polimerase Dirigida por DNA , DNA , Guanina/análogos & derivados , Humanos , DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Dano ao DNA , Biomarcadores , Reparo do DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA